1 \documentclass[12pt,
a4paper]{article
}
5 \usepackage[dvips]{graphicx}
6 \usepackage[ansinew
]{inputenc}
12 \pagenumbering{arabic
}
14 \title{Real Valued Test Functions
}
15 \author{Heuristic and Evolutionary Algorithms Laboratory (HEAL)
}
21 \section*
{Ackley Function
}
23 f(x) =
20 + e -
20 \cdot e^
{-
\frac{1}{5} \sqrt{\frac{1}{n
} \sum_{i=
1}^n x_i^
2}} - e^
{\frac{1}{n
} \sum_{i=
1}^n
\cos(
2 \pi x_i)
}
28 \textbf{Dimensions:
} \> $n$ \\
29 \textbf{Domain:
} \> $-
32.768 \leq x_i
\leq 32.768$ \\
30 \textbf{Global Optimum:
} \> $f(x) =
0.0$ at $x = (
0.0,
0.0,
\dots,
0.0)$ \\
31 \textbf{Operator:
} \> AckleyEvaluator \\
32 \textbf{Charts:
} \> \\
36 \includegraphics[width=
0.45\textwidth]{Images/Ackley_large
}
38 \includegraphics[width=
0.45\textwidth]{Images/Ackley_small
}
43 \section*
{Griewangk Function
}
45 f(x) =
1 +
\sum_{i=
1}^n
\frac{x_i^
2}{4000} -
\prod_{i=
1}^n cos(
\frac{x_i
}{\sqrt i
})
50 \textbf{Dimensions:
} \> $n$ \\
51 \textbf{Domain:
} \> $-
600.0 \leq x_i
\leq 600.0$ \\
52 \textbf{Global Optimum:
} \> $f(x) =
0.0$ at $x = (
0.0,
0.0,
\dots,
0.0)$ \\
53 \textbf{Operator:
} \> GriewangkEvaluator \\
54 \textbf{Charts:
} \> \\
58 \includegraphics[width=
0.45\textwidth]{Images/Griewangk_large
}
60 \includegraphics[width=
0.45\textwidth]{Images/Griewangk_small
}